
DYNAMICSCON.COM

https://dynamicscon.com/


Rami Mounla



About Myself

Challenge

Options

Fusion Development Process 

Results





If you want to succeed

embrace fusion development



#ProCodeNoCodeUnite



0

200

400

600

800

1000

1200

Customisation Configuration Data

Work Distribution Per Sprint

Before



High Level Non-
functional 
Requirements
o Preference to leverage a SaaS rules’ 

engine.
o SaaS solution needs to be located 

near-shore.
o Engine should not contain sensitive 

information at rest (stateless is 
preferred).

o Engine needs to be performant (to 
quantify).

o SaaS solution needs to meet a level 
of availability i.e. DR (to quantify).

o Rules are stored securely.

High Level 
Requirements
o A centralized location to manage the 

rules.
o Rules are easy to maintain by a 

power user – even with 100s of rules 
and 100s of criteria.

o Rules can easily be deployments 
across SDLC environments.

Customer’s 
Challenges
o Rules are scattered across the 

platform (Power Automate Flows, 
Plugins, and Custom Actions).

o Rules are hard coded and require 
coding changes and release.

o Finding the rules to change requires 
investigation and understanding of 
the code base.

o High-complexity rules in Power 
Automate are difficult to manage.

o Limited capability for a power user to 
maintain the rules.

o Numerous rules tend to get 
complex.

o Rules are difficult to test.











✅Low Code

❌Difficult to maintain

❌ Not a rules engine

✅ Mature

❌Costly

❌ Generates Code

✅ OOTB D365 Connector

❌”Connects” to Dataverse

❌ Slow

✅ Leader in Financial

❌Hosted Outside

❌ Complex Pattern



1. Evaluate feasibility – What are we gaining? Saving?

2. Acknowledge limitations and roadmap (nice to have)

3. Ensure the customer is on board

4. Ensure the team is on board (FUSION)

5. Support it with testing – including stress test

6. Come up with guiding principles



• Leverage out-of-the-box platform strength and capabilities

• Leverage out-of-the-box schema configuration and security

• The engine is not responsible to calculate/rollup values

• The engine is not responsible for any integrations

• The engine executes within the platform, does not require any 

external infrastructure



• The engine is an API extension to the base platform (can be 

called from outside the platform using API extensions)

• No dependencies on any of the existing components

• The engine is loosely coupled with rules and existing schema

• The engine is unaware about the rules and the existing schema 

during the design/built time



SOLID
• S – Single Responsibility

• O – Closed for Modification, Open for Extension

• L - Liskov substitution principle - design by contract

• I - Interface segregation principle: "Clients should not be forced to 

depend upon interfaces that they do not use.“

• D - Depend upon abstractions, [not] concretion



• Define Rules
• Version
• Effective Dates

Authoring

• Data Driven / Secured at Rest by Dataverse
• Deployment Data Secured in ADO
• Easy to Transport using DevOps

Release



• Key/Value Pairs
• 1:N Lists

Payload Generation

• Feed the rules and the payload to the engine
• Identify the result

Execution

• Update records
• Execute Action
• Call a Power Automate
• Create records (e.g. tasks)

Execution Result





{
ApplicationType: 4b1ee9fa,
Criteria: No Match

}

{
Rule1,
Rule2

}

Payload 
Generator

Result

Update 
Record 
Attribute

Call 
Power 
Automate

Execute 
Custom 
Action

Get Rules

Evaluate
Rules

Automation Trigger
&

Changes Record State

1

Trigger 
Evaluation

2

3

4

5 6





Evaluation Item

Evaluation Group
Evaluation Rule

Payload Template

Payload Item

Actions

Item_IDPK

Name

Data Type

Payload Element

Group_IDPK

Version

Effective Date

Related Entity

Attribute to Match

Attribute Value

Rule_IDFK
PK

Name

Order

Result

Attribute to Update Name

Result Type

Operand

Value

Value Type

Group_IDPK

Name

Entity Type

Evaluation Group

Rule_IDFK
PK

Key

Value

Payload Template

Group_IDPK

Action Type

Reference

• Update Value

• Call Automation (Flow, Action)

• Create Task from Template

• Dump Event Log

• Evaluate Group



Evaluation Engine
Business Logic

Data Layer
Plug-in

Custom 
Action

Unit
Testing

Custom API



EvaluationPlugin

EvaluationEngine

GeneratedEntities

DataverseRulesRepositor

IRulesRepository

GeneratedEntities

PayloadGenerator

EvaluationAction

IPayloadRepository

DataversePayloadRepository

-Execute()

-EvaluationEngine()

-Evaluate(Dictionary<string, object> payload)

EvaluationRule

-getRuleItemValue(EvaluationRuleItem evaluationRuleItem)

-getRules(Guid groupId)

EvaluationRuleItem

EvaluationGroup

-getRuleItemValues(EvaluationRuleItem evaluationRuleItem)

-retrieveGroup(string entityName)

-retrieveGroupPayloadTemplateId(string entityName)

-getRules(Guid groupId)

-retrieveGroup(string entityName)
-retrieveGroupPayloadTemplateId(string 
entityName)

payloadtemplate

payloaditem

-PayloadGenerator()

-generatePayload()

-Execute()

-getPayload(Guid groupId)

-getPayload(Guid groupId)





Each call is responsible for a portion of the execution. Most calls are focused on gathering data. The last call 
updates the appropriate records.

Plugin Dataverse 
Repository Evaluation PayloadGeneratorActions

Plugin Core

getRules(ruleGroupId)

evaluate()

generatePayload(parentEntity, payloadId)

getGroup(entity)

getActions(ruleGroupId)

triggerActions()









Rule Authoring & Execution









Plugin Dataverse 
Repository Evaluation PayloadGeneratorActions

Plugin Core

getRules(ruleGroupId)

evaluate()

generatePayload(parentEntity, payloadId)

getGroup(entity)

getActions(ruleGroupId)

triggerActions()



Summary of all results based on 1209 execution.

Method Minimum (ms) Maximum (m
s)

Average (ms)

getGroup 12 513 25
getRules 91 341 118
generatePayload 40 242 52
evaluate 0 1 0
getActions 12 131 30
Execute actions 'Update Task as 
Completed'

0 0 0

Execute actions 'Update Task as Failed' 0 0 0
Execute actions 'Update Parent Entity' 47 259 65
Execute actions 'Create Exception Task' 136 1086 217

Totals 338 2573 507



Plugin Dataverse 
Repository Evaluation PayloadGeneratorActions

Plugin Core

getRules(ruleGroupId)

evaluate()

generatePayload(parentEntity, payloadId)

getGroup(entity)

getActions(ruleGroupId)

triggerActions()

52ms

25ms

118ms

0ms
30ms

217ms





0

200

400

600

800

1000

1200

Customisation Configuration Data

Work Distribution Per Sprint

Before After



Complexity implementation completed / reduced

Data driven by functional analysis – no need for further customisation
Faster time to delivery
Easy to build, easy to maintain

Increased test coverage – better regression
Better work distribution

Lower defect rate
Team significantly more engaged



Leverage Fusion Development

Utilise the platform’s capabilities to their fullest

Get the most out of your team’s diversity

Nurture people’s passion

Challenge your team to look at better alternatives

Question the status quo

Explore other options that work better for your circumstances




